Engineered Filtration FV4XLCG TURBINE FILTER

Systems

Description

The EFS FV4XLCG is a heavy-duty, high efficiency filter designed with purpose specifically for the Gas Turbine industry. The FV⁴XLCG offers exceptional performance in gas turbines where pulsing or surging may

FV4XLCG media is water resistant and can withstand exposure to moisture in the airstream. Depth loading synthetic media ensures a full use of surface area for greater dust holding capacity. Wet-laid glass media also available.

The rigid construction prevents damage to media for longer filter life. The filter element is free of metal parts eliminating the risk of corrosion and punctures. Plastic caged backing for added support and protection.

Features

High efficiency, low pressure drop

Sturdy, corrosion-proof construction w/ large surface

Reduces turbine wear and compressor fouling associated power loss

Stops penetration of particles and dissolved salts

Filter Media	Micro-Glass Fiber*			
Filter Frame	Plastic			
Protection Screen	Plastic			
Adhesive	Polyurethane			
Gasket	Polyurethane			

Width	23.31" (592mm)
Height	23.31" (592mm)
Depth	11.50" (292mm): Surface Area 208 ft ²

Efficiency	MERV 16 per 52.2 F8XLCG – MERV 15/F9 E10XLGC – E10 F9 per EN779				
Rated Airflow	2500 cfm				
Initial P.D.	F9XLCG 0.41" w.g. @ 2000 cfm (100 Pa @ 3400 m3/h) 0.51" w.g. @ 2500 cfm (127 Pa @ 4250 m3/h) E10XLGC 0.52" w.g. @ 2000 cfm (130 Pa @ 3400 m3/h) 0.65" w.g. @ 2500 cfm (162 Pa @ 4250 m3/h)				
EN779 Eff (0.4µm)	F9-84%				
Final P.D.	4.00" w.g. (1000 Pa)				
Burst Strength	>25" w.g. (6, 25 Pa)				
Dust Holding Cap.	1360 grams				
Flame Retardant	UL 900				

15.75" (400mm); Surface Area 294 ft²

Resistance Curve

Airflow Rate (m3/h)								
1	850	1700	2550	3400	4250	5100	5950 250	
One of the control of	500	1000	1500	2000	2500		225 Pressure Drop (Pa) 150 150 150 150 150 150 150 150 150 150	
Airflow Rate (cfm)								
		FS)	_ E	10			

*Also available in Synthetic Media

FV4

